GCSE	Autumn HT1	Autumn HT2 Chapter 6	Autumn HT2	Spring HT1	Spring HT2	Summer HT1
<u>Chemistry</u>	Chapter 7		Chapter 8	Chapter 9	Chapter 10	
<u>Triple</u>						
<u>Science</u>	1. Crude oil,	1. Measuring rates	1. Pure substances	1. Proportions of gases	1. Using the Earth's	1. Revision
	hydrocarbons and	2. Limiting reactions	2. Formulations	in the atmosphere	resources and	2. Exam
<u>Year 11</u>	alkanes	and molar masses	3. Chromatography	2. The Earth's early	sustainable development	technique
	2. Fractional	3. Calculating rates	4. Chromatography	atmosphere	2. Potable water	3. Knowledge
	distillation and	4. Factors affecting	required practical	3. How oxygen	3. Water sample required	gaps
	petrochemicals	rates	5. Test for gases	increased	practical	
	3. Properties of	5. Rate of reaction	6. Flame tests	4. How carbon dioxide	4. Water treatment	
	hydrocarbons	required practical	7. Metal hydroxides	decreased	Alternative methods of	
	4. Combustion	6. Factors increasing	8. Tests for anions	5. Greenhouse gases	metal extraction	
	5. Cracking and	the rate	9. Ions required	6. Human activities	5. Life cycle assessment	
	alkenes	7. Collision theory	practicals	7. Global climate	and recycling	
	6. Structure and	8. Catalysts	10. Instrumental	change	6. Ways of reducing the use	
	formulae of	9. Reversible reactions	methods	8. Carbon footprint	of resources	
	alkenes	and energy changes	11. Flame emission	and its reduction	7. Corrosion and its	
	7. Reactions of	10. Equilibrium	spectroscopy	9. Limitations on	prevention	
	alkenes	11. Changing	12. Use an appropriate	carbon footprint	8. Alloys as useful materials	
	8. Alcohols	concentration and	number of significant	reduction	9. Ceramics, polymers and	
	9. Carboxylic acids	equilibrium	figures	10. Atmospheric	composites	
	10. Addition	12. Changing		pollutants of fuels	10. Haber process	
	polymerisation	temperature and		11. Properties of effects	11. Production and use of	
	11. Condensation	equilibrium		of atmospheric	NPK fertilisers	
	polymerisation	13. Changing pressure		pollutants		
	12. Amino acids	and equilibrium		12. Use rations,		
	 DNA and other polymers 	14. Using a tangent to measure rate of		fractions and percentages		
	14. Intermolecular	change				
	forces					
	Visualise and					
	represent 3D					
	models					